
International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016                                                                                                     1589 
ISSN 2229-5518   

IJSER © 2016 
http://www.ijser.org  

Numerical solution of fractional integro-
differential equations by least squares 

method and shifted Laguerre polynomials 
pseudo-spectral method 

Amr M. S. Mahdy, Rana T. Shwayyea 
 

Abstract— In this paper, we investigate the numerical solution of linear fractional integro-differential equations by least squares method  
with aid of shifted Laguerre polynomial. Some numerical examples are presented to illustrate the theoretical results.  
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1 INTRODUCTION                                                                     
ractional derivatives have recently played a significant role in many areas of sciences, engineering, fluid mechanics, biology, 
physics and economies [6]. Many real-world physical systems display fractional order dynamics, that is their behavior is 
governed by fractional order differential equations. Consequently, considerable attention has been given to the solutions of 

fractional differential equations (FDEs) and integral equations of physical interest ([2], [3], [13], [33]). Most non-linear FDEs do 
not have exact analytic solutions, so approximate and numerical techniques ([28], [30]) must be used. Many mathematical 
problems in science and engineering are set in unbounded domains. There is a need to consider practical design and 
implementation issues in scientific computing for reliable and efficient solutions of these problems. Several numerical methods 
to solve the FDEs have been given such as variational iteration method [13], homotopy perturbation method ([26], [28]), 
Adomian’s decomposition method [14], homotopy analysis method [12] and collocation method ([16], [24], [33]). 

 
Representation of a function in terms of a series expansion using orthogonal polynomials is a fundamental concept in 

approximation theory and forms the basis of spectral methods of solution of differential equations [11]. In [16], Khader 
introduced an efficient numerical method for solving the fractional diffusion equation using the shifted Chebyshev polynomials. 
In [15] the generalized Laguerre polynomials were used to compute a spectral solution of a non-linear boundary value 
problems. The classical generalized Laguerre polynomials constitute a complete orthogonal sets of functions on the semi-infinite 
interval [0, )∞ [7]. Convolution structures of Laguerre polynomials were presented in [5]. Also, other spectral methods based 
on other orthogonal polynomials are used to obtain spectral solutions on unbounded intervals [32]. Spectral collocation methods 
are efficient and highly accurate techniques for numerical solution of non-linear differential equations. The basic idea of the 
spectral collocation method is to assume that the unknown solution ( )u x  can be approximated by a linear combination of 
some basis functions, called the trial functions, such as orthogonal polynomials. The orthogonal polynomials can be chosen 
according to their special properties, which make them particularly suitable for a problem under consideration. 

In this paper least squares method with aid of shifted Laguerre polynomial is applied to solving fractional Integro-
differential equations. Least squares method has been studied in ([4], [10], [22], [27], [34]). 
In this paper, we are concerned with the numerical solution of the following linear fractional Integro-differential equation: 

1

0
( ) = ( ) ( , ) ( ) , 0 , 1,D x f x K x t t dt x tνϕ ϕ+ ≤ ≤∫         (1) 

 

 
      with the following supplementary conditions:  

( ) (0) = , 1 < , ,i
i n n n Nϕ δ ν− ≤ ∈      (2) 

 where ( )D xνϕ  indicates the ν th Caputo fractional derivative of 
( ); ( ); ( , )x f x K x tϕ  are given functions, x  and t  are real 

variables varying in the interval [0, 1], and ( )xϕ  is the unknown 
function to be determined. 
 

The structure of this paper is arranged in the following way: In section 2 , we introduce some basic definitions about Caputo 
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fractional derivatives and properties of the classical generalized Laguerre polynomials. In section 3 , we introduce the 
fundamental theorems for the fractional derivatives of the generalized Laguerre polynomials and its convergence analysis. In 
section 4 , the procedure of solution of linear fractional integro-differential equation. In section 5 , numerical example is given 
to solve the LFIDs and show the accuracy of the presented method. Finally, in section 6 , the report ends with a brief conclusion 
and some remarks.  
2  PRELIMINARS AND NOTATIONS 
 
In this section, we present some necessary definitions and mathematical preliminaries of the fractional calculus theory required 
for our subsequent development. 
 
2.1 The Caputo fractional derivative 
Definition 1  
 The Caputo fractional derivative operator Dν  of order ν  is defined in the following form:  

 
( )

10

1 ( )( ) = , > 0,
( ) ( )

mx

m

f tD f x dt
m x t

ν
ν ν

ν − +Γ − −∫  

where 1 < , , > 0.m m m xν− ≤ ∈N  
Similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation:  
 ( ( ) ( )) = ( ) ( ),D f x g x D f x D g xν ν νλ µ λ µ+ +  

where λ  and µ  are constants. For the Caputo’s derivative we have  

 = 0, ,D C C is a constantν  (3) 
 

 

0

0

0, < ;
( 1)= , .

( 1 )
n n

for n and n
nD x x for n and n

n
ν ν

ν

ν
ν

−

 ∈  


Γ + ∈ ≥  Γ + −


N

N  (4) 

 We use the ceiling function ν   to denote the smallest integer greater than or equal to ν , and 0 = {0,1,2,...}N . Recall that 

for ν ∈N , the Caputo differential operator coincides with the usual differential operator of integer order. 
For more details on fractional derivatives definitions and its properties see ([9], [21], [23], [25]). 
 
2.2 The definition and properties of the classical Laguerre polynomials 
The classical Laguerre polynomials ( )

=0[ ( )]i iL xα ∞ , > 1α −  are defined on the unbounded interval (0, )∞  and can be 
determined with the aid of the following recurrence formula  
 ( ) ( ) ( )

1 1( 1) ( ) ( 2 1) ( ) ( ) ( ) = 0, = 1,2,3,...,i i ii L x x i L x i L x iα α αα α+ −+ + − − − + +  (5) 

 where, ( )
0 ( ) = 1L xα  and ( )

1 ( ) = 1 .L x xα α + −  
The analytic form of these polynomials of degree n  is given by  

 ( )

=0 =0

( )( 1)( ) = = ,
! ( 1) !

k kn n
k k

n
k k k

n n
n xL x n k x n

k k
α

α α

α

+ +   
−−    −    +   

   

∑ ∑  (6) 

( ) (0) = .n

n
L nα

α+ 
 
 
 
 

 These polynomials are orthogonal on the interval [0, )∞  with respect to the weight function 

1( ) =
(1 )

xw x x eα
α

−

Γ +
. The orthogonality relation is  
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 ( ) ( )

0

1 ( ) ( ) = .
(1 )

x
m n mn

n
x e L x L x dx nα α α

α
δ

α
∞ −

+ 
 
 Γ +  
 

∫  (7) 

 Also, they satisfy the differentiation formula  
 ( ) ( )( ) = ( 1) ( ), = 0,1,..., .k k k

n n kD L x L x k nα α+
−−  (8) 

 Any function ( )u x  belongs to the space 2 [0, )wL ∞  of all square integrable functions on [0, )∞  with weight function ( )w x , 
can be expanded in the following Laguerre series  

 ( )

=0
( ) = ( ),i i

i
u x c L xα

∞

∑  (9) 

 where the coefficients ic  are given by  

 ( )

0

( 1)= ( ) ( ) , = 0,1,....
( 1)

x
i i

ic x e L x u x dx i
i

α α

α
∞ −Γ +

Γ + + ∫  (10) 

 Consider only the first ( 1)m +  terms classical Laguerre polynomials, so we can write  

 ( )

=0
( ) ( ).

m

m i i
i

u x c L xα≅ ∑  (11) 

 For more details on Laguerre polynomials, its definitions and properties see ([8], [31], [32]). 

   3 THE APPROXIMATE FRACTIONAL DERIVATIVES OF 
( ) ( )nL xα

 AND ITS CONVERGENCE ANALYSIS 
 
The main goal of this section is to introduce the following theorems to derive an approximate formula of the fractional 
derivatives of the classical Laguerre polynomials and study the truncating error and its convergence analysis. 
Lemma 1. 
Let ( ) ( )nL xα  be a generalized Laguerre polynomial then  

 ( ) ( ) = 0, = 0,1,..., 1, > 0.nD L x nν α ν ν  −  (12) 
 
Proof. This lemma can be proved directly using a combination of Eqs.((3))-((4)).  
 
The main approximate formula of the fractional derivative of ( )u x  is given in the following theorem. 
Theorem 1  
 
Let ( )u x  be approximated by the generalized Laguerre polynomials as ((11)) and also suppose > 0ν  then, its Caputo 
fractional derivative can be written in the following form  

 ( )
,

= =

( ( )) ,
m i

k
m i i k

i k

D u x c w xν ν ν

ν ν

−

   

≅ ∑ ∑  (13) 

 where ( )
,i kw ν   is given by  

 ( )
,

( 1)= .
( 1 )

k

i k

i
w i k

k
ν

α

ν

+ 
−  − Γ + −  

 

 (14) 

 
Proof. Khader et. al. proved them in [17].  
 
For the Laguerre polynomials ( ) ( )nL xα , we have the following global uniform bounds estimates 
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/2

( ) /2

( 1) , 0, 0, = 0,1,2,...;
!
( 1)| ( ) | (2 ) , 1 < 0, 0, = 0,1,2,....

!

xn

xn
n

e for x n
n

L x e for x n
n

α

α α

α α

+ ≥ ≥


+≤ − − ≤ ≥




 (15) 

 
Proof. These estimates were presented in [18] and [20], Szego proved them in [1].  
 
4. PROCEDURE SOLUTION USING LAGUERRE COLLOCATION METHOD 
 
In this section, the least squares method with aid of Laguerre collocation method is applied to study the numerical solution of 
the fractional Integro-differential ((1)). 
The procedure of the implementation is given by the following steps:   
    1.  Substitute by Eq.((11)) into Eq.((1)) we obtain [22]:  

 
1( ) ( )

0
=0 =0

( ) = ( ) ( , ) ( ) .
m m

i i i i
i i

D c L x f x K x t c L x dtν α α   +   
   
∑ ∑∫  (16) 

 
    2.  Hence the residual equation is defined as  

 
1( ) ( )

0 1 0
=0 =0

( , , ,..., ) = ( ) ( ) ( , ) ( ) .
m m

n i i i i
i i

R x c c c c D L x f x K x t c L x dtν α α − −  
 

∑ ∑∫  (17) 

 
    3.  Let  

 ( )
1 2

0 1 0 10
( , ,..., ) = ( , , ,..., ) ( ) .n nS c c c R x c c c x dxω⋅∫  (18) 

 where ( )xω  is the positive weight function defined on the interval [0, 1]. In this work we take ( ) = 1xω  for simplicity.  
    4.  Thus  

 
2

1 1( ) ( )
0 1 0 0

=0 =0
( , ,..., ) = ( ) ( ) ( , ) ( ) .

m m

n i i i i
i i

S c c c c D L x f x K x t c L x dt dxν α α  − −  
  

∑ ∑∫ ∫  (19) 

 
    5.  So, finding the values of , = 0,1,...,ic i n , which minimize S  is equivalent to finding the best approximation for the 
solution of the fractional Integro-differential equation ((1)).  
    6.  The minimum value of S  is obtained by setting  

 = 0 = 0,1,..., .
i

S i m
c
∂
∂

 (20) 

 
    7.  Applying ((20)) to ((19)) we obtain  

 ( )1 1 1( ) ( ) ( ) ( )

0 0 0
=0 =0

( ) ( ) ( , ) ( ) ( , ) ( ) .
m m

dt
i i i i i i

i i
c D L x f x K x t c L x dt D L K x t L x dxν α α ν α α  − − × −  

  
∑ ∑∫ ∫ ∫  (21) 

 By evaluating the above equation for = 0,1,...,i n  we can obtain a system of ( 1)m +  linear equations with ( 1)m +  

unknown coefficients ic . This system can be formed by using matrices form as follows:  
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1 1 1

0 0 1 0 00 0 0
1 1 1

0 1 1 1 10 0 0

1 1 1

0 10 0 0

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )
= ,... ... ... ...

( , ) ( , ) ... ( , )

m

m

m m m m

R x c h dx R x c h dx R x c h dx

R x c h dx R x c h dx R x c h dx
A

R x c h dx R x c h dx R x c h dx

 
 
 
 
 
 
 
 
 
 

∫ ∫ ∫
∫ ∫ ∫

∫ ∫ ∫

 

 

1

00
1

10

1

0

( )

( )
= ,

( ) m

f x h dx

f x h dx
B

f x h dx

 
 
 
 
 
 
 
 
 
 

∫
∫

∫
  

 where  

 
1( ) ( )

0
=0

= ( ) ( , ) ( ) , = 1,2,..., ,
m

i i i i
i

h D L x K x t c L x dt i mν α α− ∑∫  

 

 
1( ) ( )

0
=0 =0

( , ) = ( ) ( , ) ( ) , = 0,1,...,
m m

i i i i
i i

R x t c D L x K x t c L x dt i mν α α −  
 

∑ ∑∫  

By solving the above system we obtain the values of the unknown coefficients and the approximate solution of ((1)).  
 
5. APPLICATIONS AND NUMERICAL RESULTS 
 
In this section, we demonstrate the capability of the introduced approach. To achieve this aim, we solve two widely used 
examples from the literature. The introduced problems are stated in the traditional FLIDEs framework and then reformulated 
via our introduced methodology.  
 
Example 1: 
 
Consider the following fractional integrodifferential equation ([22])  

 
3/2 1/2 11/2

0

(8 / 3) 2( ) = ( ) , 0 , 1,
12

x x xD x xt t dt x tϕ ϕ
π
−

+ + ≤ ≤∫  (22) 

 subject to (0) = 0ϕ  with the exact solution 2( ) = .x x xϕ −  

Applying the least squares method with aid of Laguerre collocation method of ( ) ( ), = 0,1,...,iL x i mα  at = 7m , to the 
fractional integro-differential equation ((22)) we obtain a system of ((21)) linear equations with ((21)) unknown coefficients 

, = 0,1,...,7.ic i  
 
 The solution obtained using the suggested method is in excellent agreement with the already exact solution and show that this 
approach can be solved the problem effectively. It is evident that the overall errors can be made smaller by adding new terms 
from the series ((11)). Comparisons are made between approximate solutions and exact solutions to illustrate the validity and 
the great potential of the proposed technique. Also, from our numerical results we can see that these solutions are in more 
accuracy of those obtained in ([22].  
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Example 2: 
 
Consider the following fractional integrodifferential equation ([22])  

 
15/6

0
( ) = ( ) ( ) , 0 , 1,tD x f x xe t dt x tϕ ϕ+ ≤ ≤∫  (23) 

 where 
1/6 23 (5 / 6)( 91 216 )( ) = (2 2 ) ,

91
x xf x e x

π
− Γ − +

+ −  

subject to (0) = 0ϕ  with the exact solution 3( ) = .x x xϕ −  
Similarly as in Example 1 applying the least squares method with aid of Laguerre collocation method of 

( ) ( ), = 0,1,...,iL x i mα  at = 7m , to the fractional integrodifferential equation ((23)) the numerical results are shown in 
Figures 5 and 6 and we obtain the approximate solution which is the same as the exact solution.  
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 Comparison between the numerical solution and exact 
solution. 

 

Figure 2 Comparison between the numerical solution and 
exact solution. 
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Example 3: 
 
Consider the following fractional integrodifferential equation ([22])  

 
15/3 2 2

0
( ) = ( ) ( ) ( ) , 0 , 1,D x f x xt x t t dt x tϕ ϕ+ + ≤ ≤∫  (24) 

 where 
1/3

23 3 (2 / 3)( ) = / 5 / 4,xf x x x
π

Γ
− −  

subject to (0) = 0ϕ  with the exact solution 2( ) = .x xϕ  
Similarly as in Examples 1 and 2 applying the least squares method with aid of Laguerre collocation method of 

( ) ( ), = 0,1,...,iL x i mα  at = 7m , to the fractional integrodifferential equation ((24)) the numerical results are shown in 
Figures 7 and 8 and we obtain the approximate solution which is the same as the exact solution.                                                                                                                   

                                                                                                                                                  
 
 
 
 

 

 

 

 

 

 

 

4 CONCLUSION 
In this article, we introduced an accurate numerical technique for solving linear fractional integrodifferential equation. We have 
introduced an approximate formula for the Caputo fractional derivative of the generalized Laguerre polynomials in terms of 
classical Laguerre polynomials themselves. The fractional derivative is considered in the Caputo sense. The results show that the 
algorithm converges as the number of m  terms is increased. The solution is expressed as a truncated Laguerre series and so it 
can be easily evaluated for arbitrary values of time using any computer program without any computational effort. From illus-
trative examples, we can conclude that this approach can obtain very accurate and satisfactory results. For all examples, the so-
lution for the integer order case of the problem is also obtained for the purpose of comparison. In the end, from our numerical 
results using the proposed method, we can see that, the solutions are in excellent agreement with the exact solution and better 
than the numerical results obtained in [22]. All computational calculations are made by Matlab program 12b and using Maple 16 
programming.  
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